inquiry
Eine Nachricht hinterlassen
Wenn Sie an unseren Produkten interessiert sind und weitere Details wissen möchten, hinterlassen Sie hier eine Nachricht, wir werden Ihnen so schnell wie möglich antworten.
EINREICHEN
Bengbu Longkai Schweißschutztechnologie Co., Ltd.
HEIM

luftgespeistes Atemschutzgerät

luftgespeistes Atemschutzgerät

  • PAPR-Schutzhelm: Der rigorose Testprozess
    PAPR-Schutzhelm: Der rigorose Testprozess
    Dec 01, 2025
     Im Bereich des industriellen Schutzes Gebläse-Atemschutzgerät mit Luftreinigung Der Schutzhelm ist zweifellos ein robustes Ausrüstungsteil, das die Gesundheit der Arbeiter schützt. Als zentraler Bestandteil des Systems dient er als erste und wichtigste Verteidigungslinie für den Kopfschutz. Viele betrachten einen Schutzhelm lediglich als gewöhnlichen Hut, doch hinter seinen Schutzfunktionen verbergen sich strenge und anspruchsvolle Prüfverfahren – jedes einzelne dient der Sicherheit von Menschenleben und lässt keinerlei Nachlässigkeit zu. Als Schlüsselkomponente eines Schutzhelms besteht seine Hauptaufgabe darin, äußeren Einwirkungen und dem Durchdringen von Fremdkörpern standzuhalten. Seine Leistungsfähigkeit bei hohen und niedrigen Temperaturen ist ein entscheidender Qualitätstest. Bei niedrigen Temperaturen werden die meisten Materialien spröde und hart, wodurch ihre Schlagfestigkeit deutlich abnimmt. Dies ist besonders gefährlich für Arbeiter in kalten Werkstätten oder im Freien bei Minusgraden. Der Tieftemperatur-Schlagfestigkeitstest simuliert extreme Bedingungen bei Temperaturen bis zu -20 °C oder sogar darunter. Der Schutzhelm wird fixiert, und ein Hammer mit definiertem Gewicht wird aus einer bestimmten Höhe fallen gelassen. Der Test prüft, ob der Schutzhelm die Aufprallenergie effektiv absorbieren kann, sodass die Helmschale nicht bricht, die Innenausstattung nicht abfällt und die auf den Kopf einwirkende Kraft minimiert wird. Im Gegensatz zu Umgebungen mit niedrigen Temperaturen können hohe Temperaturen Materialien erweichen und ihre Festigkeit verringern, was auch die Schutzwirkung von Schutzhelmen beeinträchtigt. Für den Hochtemperatur-Schlagfestigkeitstest wird der Schutzhelm für eine konstante Temperaturperiode in einer Hochtemperaturkammer bei über 50 °C platziert, um sich vollständig an die hohe Temperatur anzupassen. Anschließend wird der Schlagtest wiederholt. Dieser Test ist vor allem für Arbeitsbereiche wie Metallurgie, Gießerei und Hochtemperatur-Einbrennprozesse geeignet. Er stellt sicher, dass der Schutzhelm auch unter hoher Temperatur eine stabile Schlagfestigkeit beibehält und nicht aufgrund von Materialerweichung versagt. Schließlich ist der Schutz der Menschen von entscheidender Bedeutung. Gebläseunterstützter Gesichtsschutz ist integriert, und eine Schwäche im Kopfschutz kann die Schutzwirkung des gesamten Systems erheblich beeinträchtigen. Während Schlagfestigkeitsprüfungen die Oberflächensicherheit gewährleisten, schützen Durchdringungsfestigkeitsprüfungen vor punktuellen Bedrohungen. In Bereichen wie dem Bauwesen und der mechanischen Bearbeitung können herabfallende oder umherfliegende scharfe Gegenstände wie Stahlstangen, Nägel und Splitter leicht zu tödlichen Kopfverletzungen führen. Die Durchdringungsfestigkeitsprüfungen bei hohen und niedrigen Temperaturen simulieren zudem extreme Temperaturbedingungen. Ein spitzer Durchdringungskegel trifft mit einer festgelegten Geschwindigkeit und Kraft auf wichtige Bereiche der Ober- oder Seitenfläche des Schutzhelms. Der Durchdringungskegel darf die Helmschale nicht durchdringen und erst recht nicht das Testmodell, das den Kopf simuliert, berühren. Diese Prüfung gibt Aufschluss über die Widerstandsfähigkeit gegen gezielte Treffer durch scharfe Gegenstände und ist einer der wichtigsten Indikatoren für die Schutzleistung des Schutzhelms. Neben Spezialtests für extreme Umgebungen dient der Alterungsbeständigkeitstest der strengen Bewertung der Nutzungsdauer des Schutzhelms. Im Langzeiteinsatz sind Schutzhelme verschiedenen Faktoren wie Sonneneinstrahlung, Feuchtigkeitsschwankungen und chemischer Gaskorrosion ausgesetzt. Die Materialien können mit der Zeit altern und spröde werden, wodurch die Schutzwirkung allmählich nachlässt. Der Alterungsbeständigkeitstest nutzt Methoden wie UV-Strahlung und Feuchtigkeits-/Wärmezyklen, um die Alterung zu beschleunigen und so jahrelange Einsatzbedingungen zu simulieren. Anschließend werden Schlagfestigkeit, Durchdringungsfestigkeit und weitere Leistungstests wiederholt, um sicherzustellen, dass der Schutzhelm während seiner gesamten Nutzungsdauer die erforderlichen Schutzwerte beibehält und potenzielle Sicherheitsrisiken durch scheinbar intakte, aber tatsächlich defekte Materialien aufgrund von Materialalterung vermieden werden. Von niedrigen bis hohen Temperaturen, von Stoßfestigkeit bis Durchdringungsfestigkeit und von Langzeitbeständigkeit bis hin zur Alterungsbeständigkeit – der Schutzhelm in Hochleistungs-PAPR-System Nachdem der Helm eine Reihe strenger Härteprüfungen durchlaufen hat, ist er zu einem unverzichtbaren Schutzschild für Arbeiter geworden. Hinter jedem Testergebnis steht der Respekt vor dem Leben; jeder Helm, der die Prüfungen besteht, ist ein Beweis für die Einhaltung der Sicherheitsverpflichtung. Wenn wir also Arbeiter mit Schutzhelmen an ihren Arbeitsplätzen sehen, sollten wir uns dessen bewusst sein: Dieser Helm hat unzählige Tests bestanden, um einen sicheren Arbeitsablauf zu gewährleisten. Für weitere Informationen klicken Sie bitte hier. www.newairsafety.com.
    MEHR LESEN
  • Unterschiede zwischen TH3 und TM3 bei PAPRs
    Unterschiede zwischen TH3 und TM3 bei PAPRs
    Nov 11, 2025
     Zu den Schutzstufenbezeichnungen von PAPRs Gebläseunterstützte Atemschutzgeräte (PAPR) der Kategorien TH3 und TM3 werden leicht verwechselt. Viele Anwender fragen sich bei der Produktauswahl: Wenn beide Schutz der Stufe 3 bieten, warum gibt es dann einen Unterschied zwischen „TH“ und „TM“? Tatsächlich sind diese beiden Bezeichnungen nicht willkürlich, sondern stellen spezielle Schutzstufen dar, die auf international anerkannten Klassifizierungsstandards für Atemschutzgeräte basieren und auf unterschiedliche Umweltrisiken, Schadstoffarten und Anwendungsanforderungen zugeschnitten sind. Die Klärung der wesentlichen Unterschiede ist entscheidend für die korrekte Auswahl von PAPR für die jeweiligen Arbeitssituationen. Um den Unterschied zwischen den beiden Schutzklassen zu verstehen, ist es zunächst notwendig, die Kerndefinitionen der Bezeichnungen zu klären: Die „3“ in TH3 und TM3 steht für die Intensität des Schutzniveaus (in der Regel entsprechend den Schutzanforderungen bei hohen Konzentrationen oder Langzeitexposition), während die Präfixe „TH“ und „TM“ direkt auf die Kernrisiken der jeweiligen Schutzszenarien hinweisen. „TH“ ist die Abkürzung für „Thermal/High-humidity“ und eignet sich hauptsächlich für Umgebungen mit hohen Temperaturen und hoher Luftfeuchtigkeit in Verbindung mit Feinstaubbelastung; „TM“ ist die Abkürzung für „Toxic/Mist“ und bezieht sich auf Umgebungen mit toxischen Gasen, Dämpfen oder nebelartigen Schadstoffen. Vereinfacht gesagt, liegt der wesentliche Unterschied zwischen den beiden Schutzklassen in den unterschiedlichen Kernrisiken der jeweiligen Schutzszenarien, was wiederum Unterschiede in wichtigen Leistungsmerkmalen wie Konstruktion, Filtersystem und Materialien zur Folge hat. Hinsichtlich Anwendungsszenarien und Schutzobjekten sind die Grenzen zwischen TH3 und TM3 klar definiert. Die Hauptanwendungsszenarien von TH3-PAPRs konzentrieren sich auf Bereiche mit hohen Temperaturen, hoher Luftfeuchtigkeit und Feinstaubbelastung, wie beispielsweise die Wartung von Hochöfen in der Metallurgie, die Kesselwartung und Keramikbrennereien. In diesen Bereichen übersteigt die Umgebungstemperatur häufig 40 °C, die relative Luftfeuchtigkeit liegt über 80 % und es treten große Mengen an Metallstaub und Schlackenpartikeln auf. Daher liegt der Schutzfokus von TH3 auf „Hochtemperaturbeständigkeit + Schutz vor Feuchthitze + Partikelfiltration“. Dabei muss sichergestellt sein, dass der Motor bei hohen Temperaturen nicht ausfällt, die Maske nicht beschlägt und die Filterwatte nicht durch Feuchtigkeitsaufnahme versagt. LuftpaketAtemschutzmasken hingegen werden hauptsächlich in Umgebungen mit giftigen und schädlichen Gasen/Dämpfen oder feinen Schadstoffen eingesetzt, beispielsweise bei der Lösungsmittelverdampfung in der chemischen Industrie, beim Lackieren und bei der Pestizidherstellung. Bei den Schadstoffen handelt es sich meist um organische Dämpfe (wie Toluol und Xylol) und saure Tröpfchen (wie Schwefelsäurenebel). Ihr Schutzprinzip basiert auf effizienter Schadstofffiltration und Dichtigkeit. Das Filtersystem benötigt einen speziellen Filterbehälter für giftige Gase (anstelle eines einfachen Filterwattes), und die Maske muss besonders dicht sein, um das Eindringen giftiger Substanzen zu verhindern. Unterschiede in den Designprozessen und Kernleistungsmerkmalen bilden die technische Grundlage dafür, dass sich TH3 und TM3 an verschiedene Szenarien anpassen können. TH3-Typ PAPR-Atemschutzgeräte Der Fokus liegt auf der „Umweltbeständigkeit“ der Schlüsselkomponenten: Der Motor besteht aus hochtemperaturbeständigen Materialien (z. B. Isolierbeschichtungen bis 120 °C), die Maske ist mit einer Antibeschlagbeschichtung und einer Belüftungs- und Ablenkstruktur ausgestattet, die Filterwatte verwendet hydrophobe Materialien, um ein Verstopfen durch Feuchtigkeitsaufnahme zu verhindern, und einige Modelle verfügen zusätzlich über Wärmeableitungsöffnungen. Der Designschwerpunkt der PAPRs vom Typ TM3 liegt auf „Toxizitätsprävention und -abdichtung“: Der Filterbehälter für toxische Gase verfügt über eine mehrschichtige Adsorptionsstruktur (z. B. eine Kombination aus Aktivkohle und chemischen Adsorbentien), wobei die Adsorptionsmaterialien auf verschiedene toxische Substanzen abgestimmt sind; der Sitz zwischen Maske und Gesicht besteht aus hochelastischem Silikagel, um Leckagen zu minimieren; einige High-End-Modelle integrieren zudem eine Gaskonzentrationsalarmfunktion, um das Ausfallrisiko des Filterbehälters für toxische Gase in Echtzeit zu überwachen. Darüber hinaus unterscheiden sich auch die Zertifizierungsstandards für die beiden: TH3 muss den Partikelfiltrationseffizienztest in Umgebungen mit hohen Temperaturen und hoher Luftfeuchtigkeit bestehen, während TM3 den Penetrationsratentest für bestimmte toxische Gase bestehen muss. Die Verwechslung von TH3- und TM3-Atemschutzgeräten bei der Auswahl kann zu unzureichendem Schutz oder unnötigen Investitionen führen. Wird ein TH3-Atemschutzgerät beispielsweise beim chemischen Sprühen falsch eingesetzt, filtert es lediglich Farbnebelpartikel, kann aber keine organischen Dämpfe adsorbieren, was zum Einatmen giftiger Substanzen führt. Wählt man hingegen ein TM3-Atemschutzgerät für die Kesselwartung, filtert es zwar Staub, der Motor ist jedoch in Umgebungen mit hohen Temperaturen anfällig für Überlastung, und die Funktion des Filterbehälters zum Schutz vor giftigen Gasen ist überflüssig, was die Gerätekosten erhöht. Daher ist das wichtigste Auswahlprinzip, die Kernrisiken der jeweiligen Situation zu berücksichtigen: Zunächst muss geklärt werden, ob es sich um eine Umgebung mit hoher Temperatur und hoher Luftfeuchtigkeit sowie Feinstaub oder um giftige Gase/Nebel sowie Feinstaub handelt. Anschließend ist das passende Atemschutzgerät (TH3 oder TM3) auszuwählen. Kurz gesagt: Der Unterschied zwischen TH3 und TM3 liegt nicht in der Schutzhöhe, sondern in der Anpassung an die jeweilige Situation. Die präzise Auswahl ist entscheidend für den Atemschutz.Wenn Sie mehr erfahren möchten,Bitteklickenwww.newairsafety.com.
    MEHR LESEN

Eine Nachricht hinterlassen

Eine Nachricht hinterlassen
Wenn Sie an unseren Produkten interessiert sind und weitere Details wissen möchten, hinterlassen Sie hier eine Nachricht, wir werden Ihnen so schnell wie möglich antworten.
EINREICHEN
Kontaktieren Sie uns: sales@txhyfh.com

HEIM

PRODUKTE

WhatsApp

Kontaktieren Sie uns